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Abstract

In recent years the development of 
new technologies for the design of DNA 
microarrays, has generated a large volume 
of biological data, which requires the 
development of parallel computational 
methods for their functional interpretation. 
On these sets of data, biclusters construction 
algorithms attempt to identify gene 
associations and experimental conditions, 
where genes exhibit a high correlation to each 
given condition. In this paper, we introduce a 
new multi-objective genetic algorithm, that 
unlike other evolutionary proposals, does not 
require a local search for the identification of 
optimum biclusters. The proposed algorithm 
is simpler and had better performance than 
the ones found in the current literature for two 
real gene expression data. 

Keywords: biclustering, gene expression, 
multi-objective genetic algorithm, microarray 
DNA.

1. Introduction

The increased use of microarray technology 
has generated a large volume of biological 
data, which necessitates the development 
of parallel computational methods for 
their functional interpretation. To address 
this challenge it is necessary to apply data 
mining techniques. Among these techniques, 
in regards to database gene expression, 
clustering has become one of the most used 
approaches as a first step in the work of 
discovering new knowledge. However, the 
results of clustering methods applied to genes 
have been limited. This limitation causes 
difficulty in analyzing the expression of genes 
for a given set of experimental conditions. To 
overcome this limitation various algorithms 
have been proposed to cluster genes and 
conditions simultaneously. These algorithms 
are called bicluster algorithms and have the 
aim to identify groups of genes, given a set 
of experimental conditions, where the genes 
exhibit a high correlation across a set of given 
conditions.
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The search for biclusters in gene expression 
arrays is a very attractive computational 
challenge. The work of Cheng and Church 
[1]� is� of� signi¿cance� since� it� introduced� the�
concept of bicluster applied to the analysis of 
gene�expression�for�the�¿rst�time,�and�proposed�
an original algorithm for its construction.  
Despite some limitations presented in this 
algorithm (as discussed by Rodriguez et al. [2] 
and by Aguilar [3]), it has been used as a basis 
for evaluating and comparing the performance 
of a wide variety of more recent and elaborated 
algorithms.
   Madeira and Oliveira [4] presented a 
classi¿cation� of�biclustering�methods�mainly�
based on two aspects: i) the type of biclusters 
that� the� algorithms� are� able� to� ¿nd,� and� ii)�
the computational technique used. There are 
algorithms that seek biclusters with constant 
values, e.g. the mClustering [5], based on the 
divide and conquer approach, and the DCC 
[6] based on a combination of clustering of 
rows and columns. Other methods identify 
biclusters with columns or rows with constant 
values, such as the CTWC [7], the δ-Patterns 
[8] based on a greedy approach, and Gibbs [9]. 
Some methods like δ- biclusters [1] and FLOC 
[10, 11], use greedy approaches, the pClusters 
[12] uses exhaustive search, Plaid Models 
[13] and PRM [14, 15], are based on the 
identi¿cation� of� the� distribution� parameters.�
There are also methods that seek biclusters 
with patterns of coherent evolution (OPSMs 
[16] and xMotifs [17]), using a greedy search, 
and SAMBA [18] and OP-Clusters [19], 
which perform exhaustive search.
��������Rodriguez�et�al.�[2]�add�to�this�classi¿cation�
methods that use stochastic search. In this 
branch algorithms such as the SEBI [20] and 
Simulated Annealing [21] are included.

     Despite the existence of a large number 
of biclustering algorithms, there are still many 
signi¿cant�challenges�to�overcome:

•The scarce information available to    
llllllldefine the type of specific biclusters to 
lllllllsearch.

•The amount of noise in the data matrices.

•The computation time due to the complex 
llllllcalculations often required.

•The absence of data in the input matrices.

•The existence of user parameters that llllll    
NJJJstrongly influence the final results.

•The lack of assessment methods for the 
llllll generated results.

•The multi-objective nature of the 
llellproblem, since the MSR and the bicluster 
lllll size, must be optimized at the same time.

In this paper, we introduce an evolutionary 
algorithm for the biclustering problem. The 
algorithm considers biclusters themselves 
as individuals in a population to evolve. The 
objective is to minimize the MSR value of 
biclusters, while simultaneously maximizing 
its size. Experiments are performed on two 
reference sets data (Yeast Saccharomyces 
cerevisiae and Human Lymphoma B-cells). 
The problem to solve is formally defined next.

2.  Biclustering analysis of gene 
expresion

Cheng and Church [1] introduced the 
concept of bicluster within the context of gene 
expression data analysis. A bicluster is a subset 
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of genes and a subset of conditions with a high 
level of similarity. The similarity is considered 
as a consistency measure between genes and 
conditions in the bicluster.

Within this context, we can define 
biclustering as the process of grouping genes 
and conditions simultaneously, searching for 
biclusters of maximum size and maximum 
similarity within a data matrix of gene 
expression.

Madeira and Oliveira [4] present a formal 
approach to the problem of biclustering. As 
input data having a matrix of n by m, where 
each element aij is usually a real value. In the 
case of gene expression arrays,  aij represents 
the level of expression of gene i under 
condition j. More generally, one considers the 
data matrix A with a set X of rows and a set of 
columns Y, where the element aij corresponds 
to a value representing the relationship 
between the row i and column j.

The matrix A with n rows and m columns 
is defined by its set of rows, X = {x1,…,xn} 
and its set of columns, Y = {y1,…,ym}. (X, Y) 
is used to denote the matrix A. If I    X and 
J      Y are subsets of rows and columns of 
A,  respectively, then AIJ = (I, J) which denotes 
the submatrix AIJ of A containing only the 
elements aij belonging to the submatrix with 
the set of rows I and the column set J. 

Given the matrix A, a cluster of rows is a 
subset of rows that have a similar behavior 
through the set of all columns. This means 
that a cluster of rows AIY = (I, Y) is a subset 
of rows defined by the set of all columns Y, 
where I = {i1,…,ik} is a subset of rows I     X 
and k�≤�n. A cluster of rows (I, Y), can thus 
be defined as a submatrix k by m of the data 
matrix A. Similarly, a cluster of columns 
is a subset of columns which have a similar 

behavior across the set of all rows. A cluster 
AXJ = (X, J) is a subset of columns defined on 
the set of all rows of X, where J = {j1,…,js} 
is a subset of columns (J      Y and s�≤�m). A 
cluster of columns AXJ = (X, J) can be defined 
as a submatrix of n by s of the data matrix A.

A bicluster is a subset of rows that have a 
similar behavior through a subset of columns, 
and vice versa. The bicluster AIJ = (I, J) is a 
subset of rows and a subset of columns of Y, 
where I = {i1,…,ik} is a subset of rows (I    X 
and k�≤�n),  and J = {j1,…,js}  is a subset of 
columns (J     Y and s�≤�m). A bicluster (I, J) 
can be defined as a submatrix of k by s of the 
data matrix A.

The specific problem addressed by the 
biclustering algorithms is defined as: given a 
data matrix A it is required to identify a set of 
biclusters Bk = (Ik , Jk) such that each bicluster 
Bk satisfies some property of homogeneity. 
The exact features of homogeneity of 
biclusters vary according to the statement of 
the problem.

Although the complexity of the biclustering 
problem depends on the exact formulation of 
the problem, and specifically the function 
used to evaluate the quality of a bicluster, most 
variants of this problem are NP-hard.

3.�Related�work

Recently there have been several algorithms 
based on a variety of techniques to find 
biclusters, for example, BBC [22], Reactive 
GRASP [23], RAP [24], GS Binary PSO [25] 
and TreeBic [26], among others.

In general, it is difficult to evaluate and 
compare biclustering methods, since the 
results obtained strongly depend on the 
scenario under consideration. Prelic et al. [27] 
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present an evaluation and comparison of five 
outstanding methods. The evaluated methods 
were: CC [1], Samba [18], OPSM [16], ISA 
[28, 29] and xMotif [17]. To evaluate the 
methods both artificial and real data sets were 
used. Tested with artificial data biclusters with 
constant and additive values. They also were 
tested with systematic increase in noise, and 
with increasing overlap between the created 
biclusters. As for the real data, biological 
information used GO annotations [30, 31], 
maps of metabolic pathways [31], and 
information on protein-protein interaction [32, 
31]. In general, the methods   ISA, Samba and 
OPSM perform well. While some methods 
perform better under certain scenarios, show 
lower performance in others.

Mitra and Banka [33] introduced a 
multiobjective evolutionary algorithm 
(MOEA) with the addition of local search. 
The objective is to find large size biclusters, 
with MSR values below a predefined 
threshold. Their method was evaluated using 
two sets of gene expression data referenced 
in the literature: yeast and Human B Cell 
Lymphoma. The yeast data they used, is a 
collection of 2884 genes under 17 conditions, 
with 34 null entries with value -1, indicating 
loss of data. Expression data of Human B 
cells [37], containing 4026 genes under 96 
conditions, with 12, 3% of values lost. The 
results of this method were compared with 
FLOC [11], DBF [35] and CC [1], using as a 
criterion of comparison the MSR, and the size 
of the biclusters obtained by each method. In 
addition, algorithms determine the biological 
significance of the biclusters in connection 
with information on the yeast cell cycle. The 
biological relevance is determined based on 
the statistical significance determined by 

using the GO annotation database [36]. As for 
the comparison based on the MSR and the size 
of the biclusters obtained, MOEA obtained 
results far superior to the obtained by other 
methods.

Dharan and Nair [23] proposed Reactive 
GRASP method. Statistical significance of 
the found biclusters is assessed to see how 
well they correspond with the known gene 
annotation [33]. For this purpose the package 
SGD GO gene ontology term finder [36] 
were used. The performed tests show that the 
Reactive GRASP is able to find biclusters 
with higher statistical significance than the 
basic GRASP [23] and the CC [1].

Das and Idicula [25] proposed an algorithm 
based on greedy search combined with PSO. 
The tests were conducted on expression data 
of the cell cycle of the yeast Saccharomyces 
cerevisiae. The data used is based on [34], and 
consists of 2884 genes under 17 conditions. 
The results were compared with those of 
SEBI [20], CC [1], FLOC [11], DBF [35] 
and Modified Greedy [25]. The comparison 
was based on the MSR (also named as MSE) 
presented by [1], and the size of the biclusters. 
The GS Binary PSO outperformed the other 
methods, except to DBF, on the MSR, and 
showed competitive results in the size of the 
biclusters.

Caldas and Kaski [26] proposed a method 
based on a hierarchical model (TreeBic). The 
model assumed that the samples or conditions 
in a microarray are grouped in a tree structure, 
where nodes correspond to subsets of the 
hierarchy. Each node is associated with a 
subset of genes, for which, samples are highly 
homogeneous. The tests were conducted on 
a collection of 199 miRNAs profiled from 
218 human tissues from healthy and tumor 
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cell lines. The results were compared with 
those obtained by Samba [18] Plaid [13], 
DC [1] and OPSM [16] methods. TreeBic 
performed better in general, both in terms of 
the proportion of biclusters enriched to at least 
one tissue or GO category, and in terms of 
the total number of tissues and GO categories 
enriched. Despite these results, the TreeBic 
method had the second lowest number of 
biclusters generated.

4.�Proposed�algorithm

We propose a multi-objective genetic 
algorithm, where each individual in the 
population is a bicluster. The objective is to 
minimize both the MSR and the bicluster 
size. Unlike the MOEA proposed in [33], this 
algorithm does not require of a local search 
to keep biclusters under the MSR threshold 
δ.�Instead,�consider�the�fact�of�being�under�or�
over the threshold, as a first condition when 
select the best biclusters. This represents two 
important advantages, first it avoids the use 
of� the� parameter� α� required� in� local� search,�
which influences heavily the obtained results. 
The second advantage is that it reduces the 
execution time, allowing to use a larger 
number of individuals and generations.

4.1�Representation�of�biclusters

A bicluster is represented as a binary string 
where the first bits correspond to genes and 
the second part of bits to the conditions. If 
the binary string has a value one at position 
j of the first part it indicates that the gene j, 
the same applies for the condition part of the 
string. A bicluster consists of the values of 
selected gene expression under the selected 

conditions. Figure 1A shows an example of 
the binary representation of a bicluster. The 
bicluster corresponding to the binary string 
shown in Figure 1A is shown if Figure 1C, 
it is extracted from the expression matrix 
presented in Figure 1B.

4.2�Multiobjective�genetic�algorithm

The Algorithm 1 starts by creating a 
population of n biclusters. Each bicluster is 
created by selecting at random two genes and 
two conditions of the matrix expression, so 
that the MSR do not exceed the threshold δ.�If�
it is exceeded the selected pair are discarded, 
and the process repeated until the MSR 
becomes under the threshold.

The nondominated front of each bicluster 
is computed as it is done in [33]. The 
nondominated front is calculated based on the 

Figure 1. Representation of a bicluster. 
A)�The�binary�string�representing�the�

bicluster. B) An array of gene expression 
data. C) Bicluster values comprising 

selected�expression�(shaded�values)�of�the�
matrix in Figure B.
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concept of dominance. A bicluster i dominates 
bicluster j, if either of the following conditions 
hold:

    

For a bicluster to belong to a nodominated 
front, it should not be dominated by some 
other in the population. Once the biclusters 
are identified in the first front, they are 
discarded for the identification of the second 
front of biclusters. This process is repeated 
successively until there are no dominated 
biclusters.

Step 3 computes the crowding distance 
of each individual as it is done by Mitra and 

Banka [33]. This distance is a measure of the 
degree of saturation of the search space (in 
terms of size and MSR). The more similar 
the MSR and size of an individual is to the 
rest of the population, the lower the crowing 
distance. This distance is used to maintain 
diversity in the population.

Once the nondominated fronts and the 
crowding distance are computed, the selection 
of the best individuals is performed. The 
binary selection with crowding is applied. First 
randomly rearrange the individuals within the 
population, and two adjacent individuals to 
conduct the tournament. An inidividual i is 
chosen on an individual j if it meets any of the 
following conditions:

1. The MSR of i is below the threshold δ, 
and the MSR of j is not below the threshold.

2. Both MSR are on the same side of the 
threshold δ, and i is in a front with lower index 
than j.

3. Both MSR are on the same side of the 
threshold of δ, both belong to the same front, 
and the crowding distance of i is greater than 
the one corresponding to individual j.

Crossover is applied on the selected 
individuals. For this process individuals are 
taken in pairs (parents), and creates two new 
biclusters (children) per each pair of parents. 
For each child, two random crossover points 
are selected in the binary strings corresponding 
to both parents. The first crossover point is set 
to a bit position corresponding to a gene, and 
the second crossover point is set to a position 
corresponding to a condition. The child takes 
from one of the parents the genes found to 
the left side of the first crossover point, and 
from the other parent genes to the right. The 
same procedure applied to the conditions. 
The parent bicluster whose genes are taken 

1. The MSR of i (MSRi ) is less than or 
equal to MSRj, the size of i (sizei) is larger 
than sizej.

2. sizei is greater than or equal to sizej, and 
MSRi  is less than MSRj. 
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from the left side of the first crossing point is 
chosen randomly. Figure 2 shows an example 
of the crossover of two biclusters. The child 
one is created by taking genes from the left 
side of the first crossing point in parent one, 
and genes on the right side of the first crossing 
point of the parent two. Take the conditions 
on the left side of the second crossing point of 
parent two and conditions from the right side 
of the second crossing point of parent one. 
The child two is created in reverse order of 
child one.

Subsequently, the mutation process was 
applied to a percentage of biclusters in the 
children population. Mutation of a bicluster is 
done by selecting a random bit in the string, 
and changing its value. If the bit is a zero 
value is changed to one which represents a 
gene or condition that was not considered in 
the bicluster now is included.

Figure 3 shows an example of a mutation 
in a bicluster. In this example the tenth bit 
was randomly selected, and modified. The 
bit corresponds to the position of a gene. The 
value of this bit was changed from zero to one, 
which represents the values of expression of 
the gene number 10 in the matrix expression 

for the selected conditions (values shaded), 
will be included in the bicluster.

After the mutation is performed a process 
which combines both populations (parent and 
children) is carried out. This process consists 
in considering only as a single population 
all biclusters from both populations. For this 
combined population nondominated fronts 
and crowding distances were recalculated. 
Subsequently, the biclusters are ordered for 
this combined population, according to the 
following criteria:

Once the individuals are arranged in a 
combined population the first n are selected, 
which will be considered the next generation 
of biclusters. This process stops after a number 
of generations ng without change in the size 
of the largest bicluster with MSR below 

Figure 2. Example of a cross between 
two biclusters.

Figure�3.�Example�of�mutation�of�a�
bicluster

1.�First�¿t�the�biclusters�that�are�below�the�     
jjjjthreshold δ.
2. Within biclusters which are at the same 
jjjjside� of� the� threshold,� ¿rst� ¿t� those�
jjjjhaving a lower front.
3. Among the biclusters on the same side of 
jjjjthe� threshold,� and� in� the� same� front,� ¿t�
jjjj¿rst�those�with�a�larger�crowding�distance.
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threshold is reached.

5. Experimental results

    We apply the multi-objective genetic 
algorithm on two data sets used as test cases. 
The first experimental condition tested 
was the expression of 2884 genes under 17 
conditions with the Yeast Saccharomyces 
Cerevisiae, containing 34 nulls. The second 
set corresponds to the expression of 4026 
genes under 96 conditions of Human B 
cells Lymphoma, with 47,639 null values 
corresponding to 12.3% of the full set. Both 
sets of data were taken from the site http://arep.
med.harvard.edu/ [37]. The experiments were 
performed using an MSR threshold of δ�=�300�
for�the�yeast,�and�a�threshold�δ�=�1200�for�the�
Lymphoma. Although there is no justification 
from the point of view of biology, these values 
have been used extensively to evaluate and 
compare a variety of biclustering methods. 
In the case of the yeast assembly, null values 
were replaced by random values in the range 0 
and 800. In the case of Lymphoma null values 
were replaced by random values in a range of 
-800 to 800. Both threshold values selected 
for the MSR, as well as the strategy and range 
to replace the zero values were established in 
the discussed manner in order to make a more 
direct comparison with the results reported in 
other studies.

The experiments consisted of 30 runs 
with each data set, using populations of 50 
individuals, and setting a value of 400 for the 
number of generations without improvement. 
A 90% of selection, while 100% and 50% 
for crossover and mutation, respectively. The 
method was coded and implemented in C 
Sharp, experiments were performed under the 

Windows using Visual Studio 7 Ultimate 2010 
in a Laptop of 1.73 GHz speed and 1.00 GB of 
RAM. The algorithm receives as input a text 
file with the matrix of expression data to be 
processed. Returns as output another text file 
with the built biclusters, the values that were 
used to replace the null values in the array, 
and a descriptive information on the best 
biclusters built.

The average MSR value, the number of 
genes, number of conditions, and the average 
and maximum size of the discovered biclusters 
were used as assessment criteria. Table 1 shows 
a comparison of the results obtained from the 
Yeast dataset. For this comparison the FLOC 
algorithms [10], DBF [35], MOEA [33], and 
the one presented by Cheng and Church [1] 
are considered here. This is a representative 
group of algorithms for biclustering, which 
have been analyzed frequently in literature. 
The results reported for these algorithms were 
taken from the work of Mitra and Banka [33]. 

The proposed algorithm (called MOGA) 
significantly outperforms other algorithms in 
the size of the biclusters discovered under the 
defined threshold. The MOGA obtains larger 
biclusters, even larger than those of MOEA, 
which already exceeds the performance of 
other algorithms. A very important advantage 
MOGA with respect to MOEA is that it does 
not require a local search to keep the biclusters 
below the threshold, which avoids the handling 
of�the�parameter�α�(used�in�various�methods),�
whose proper choice largely influences on the 
results.
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Table 1. Comparative results of 
biclustering�methods�on�data�from�the�
Yeast�Saccharomyces�Cerevisiae,�using�a�

threshold�MSR�δ�=�300.

The results of the algorithm using the 
Lymphoma data were compared with the 
results reported by Mitra and Banka [33], 
which were the best results in the literature 
(see Table 2). This table shows that MOGA 
outperforms the best MOEA result, both 
in terms of the size of biclusters found, as 
in CI value. The CI (Consistency Index) 
introduced by Mitra and Banka, represents the 
relationship between the MSR of a bicluster 
and its size. This ratio indicates how well the 
two requirements of biclusters are met: i) the 
expression levels of genes are similar over 
a range of conditions, i.e., must have a low 
MSR, and ii) the size is as large as possible. 
A bicluster is considered better as its CI value 
is smaller.

Table�2.�Best�biclusters�found�on�the�data�
set�of�the�Human�B-Lymphoma�cells,�MSR�

using�a�threshold�δ�=�1200.

6. Conclusions

A new multi-objective genetic algorithm 
for the biclustering of gene expression data 
has been proposed. Experiments conducted 
on two sets of biological data, which have 
been used widely as test cases, have shown 
that the proposed algorithm performs better 
than others currently reported in the literature. 
An important feature of our algorithm is that 
it does not require a local search, contrary 
to some current algorithms which require 
maintaining the MSR below the threshold by 
means of this technique.  

Experiments were focused on the discovery 
of large biclusters with MSR below predefined 
thresholds for both sets of data, which are 
widely accepted by the scientific community.

Future work will assess the biological 
significance of the generated biclusters, based 
on ontological annotations. The proposed 
evolutionary algorithm will be redesigned to 
work with parallel models of computation, 
which will allow us to deal with larger 
instances.
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